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Abstract

This work provides a complete classification of the smooth three-folds in the Grassmann variety
of lines inIP*, for which the restriction of the universal quotient bundle is a direct sum of two line
bundles. For this purpose we use the geometrical interpretation of the splitting of the quotient bundle
as well as the meaning of the number of the independent global sections of each of its summands.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

As it is well known, the geometry of a subvariety in a projective sg&tds given by
the hyperplane bundi@pv (1) restricted to the subvariety. In the same way, the geometry
of a subvarietyX in G(k, N), the Grassmann variety &fplanes in a projective spad®
is given by the restriction to it of the universal quotient bun@lef rankk + 1. It is thus
of interest to have as much information as possible of this restriction, for instance about its
stability.
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A first step in this direction was given 7], where a classification of all the smooth
surfaces of5(1, 3) for which the restriction of splits is given. This classification fits into
the more general problem of studying the stability of the restriction. In fact, an important
conjecture by Dolgachev and Reider states that the restrictigh®semistable unless the
surface is contained in a hyperplanePSf the Plicker ambient space @f(1, 3).

In this paper we deal with the same problem for three-folds inGi¢le 4) (also called
congruences). Our goal is to classify all the smooth congruen&es G(1, 4) for which
Qyy splits. The same problem for the universal subbundle of rank three was already solved
in[2].

Geometrically the fact that the restriction of the universal quotient bundle spig-as
L1 ® L2 means that the image df in the Grassmannian of lines [h(HO(QW)) is as
a subset of the set of lines joining the points lying in two disjoint linear subvarieties of
P(HO(Q)y)) with respective dimensiong’(£1) — 1 andh®(L£2) — 1. We use this fact to
make the classification depending b?(Q|y) which essentially amounts to making it to
depend on the dimension of two linear subspaces meeting all the lines of the congruence. In
this way, we see that either the congruence comes from a projection of another Grassmannian
of bigger dimension or all of its lines meet a linear space of small dimension. Analyzing
each of these very special properties we conclude our classification.

The structure of the paper is as follows. In a first section we give the preliminaries, a
list of examples of congruences with split universal bundle (which will be eventually the
complete list) and state our classification result, explaining the different non-trivial cases
to study. In the second section we complete the classification by studying separately each
of the different cases.

The results of this paper is part of the PhD dissertation of the second author, under the
supervision of the first one.

2. Preliminaries, examples and first cases
2.1. Preliminaries

We will work over the fieldC of complex numbers. O6'(1, 4), the Grassmann variety
of lines inP#, we will consider the subbundle and quotient bundles appearing in the exact
sequence

058 —-VR0; - Q—0. (1)

Each congruenc& of G(1, 4) has a bidegree:(b) wherea is the number of lines of
passing through a general point Bf and b is the number of lines of contained in a
general hyperpland and meeting a general line &f

A fundamental curve of a congruence is a curve that meets all lines of the congruence.

If Y € G(1, 4)is acongruence, the dimensionm?(Q|y) determines the Grassmannian
in whichY fits in a natural way. More precisely, we will say that a subvarlety G(1, N)is
nondegenerate if the union of all the lines ok is not contained in a hyperplaneB®f . Then
hO(Q‘y) = N + 1 means thaY is isomorphic to a nondegenerate subvarity G(1, N)
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via a projection fronG(1, N) to G(1, 4) induced by a linear projection frofl" to P*. We
will say thatY c G(1, 4) islinearly normal if hO(Q|y) = 5. Itis immediate to observe that
Yis linearly normal if and only i:%(G (1, 4), Q ® Zy) = 0, whereZy is the ideal sheaf of
Yin G(1, 4).

2.2. Examples

Example 2.1. Let Y be a congruence ig(1, 4) for which there exists a poin € P4
contained in all the lines of. Because of dimensional reasons, it is easy to seehthat
is in fact the congruence of all lines if* passing throughy. Hence,Y = P3, Qi =

Ops @ Ops(1), the congruenck is the zero locus of a global section®fnd its bidegree

is (1, 0). Finally, we recall fronj5] Lemma 4.1 that this is the only congruence of bidegree
1, 0).

Example2.2. The classification given ifp] shows thatthere is a unique smooth congruence
of bidegree (11) in G(1, 4). This is described as the set of lines meeting a line P*

and a skew plan&l c P*. As an abstract three-fold,is isomorphic tdP! x P2, andQ)y

is isomorphic taOp1, p2(1, 0) & Op1,p2(0, 1). ObviouslyL is a fundamental line andis
linearly normal.

Example 2.3. Again from[5] we see that there is only one type of smooth congruence
of bidegree (21) in G(1, 4). This is described in the following way (s€H). There is a
hyperplang? ¢ P* containing a lind.’, and there exists another likec P* (not contained

in H) with a fixed isomorphisny from L to the pencil of planes containing inside of

H. The congruence is given by the union, when varypng L, of the sets of lines passing
throughp and contained in the linear spanéndg(p). From this description it is clear
that, as an abstract three-foldjs isomorphic to the blow-ufp3(¢) of P2 along a linet
(equivalently, a hyperplane section of the Segre embeddiRg afP3, as described if5]),

and Qyy is isomorphic toO(H) & O(H — E), whereH is the pullback of the hyperplane
section of P2 and E is the exceptional divisor. It is also clear thatis a fundamental
line and thatY is not linearly normal, since it comes from a nondegenerate three-fold
in G(1, 5).

Example 2.4. We study here one of the three types of smooth congruences of bideg2ge (2

in the classification given ifb]. As an abstract variety;is the projectivizatio®(7p2) of the
tangent vector bundle of the projective plane, and hence it can be regarded as the incidence
subvariety insidé? x P2". It has therefore two different structures as a scroll in lines over
a projective plane. Each of them yields a plane meeting all the lin&sMbreover, if we

call these two plane&l andIT’, there is an isomorphism between the planél and the

set of lines infT’. The congruence consists thus in the union of the pencils of lines passing
though a poinp and contained in the plane spannegltandy(p). Itis easy to see from this
description tha)y is isomorphic to the restriction t60f Op2, p2(1, 0) & Op2, p2:(0, 1).

In particular,Y is not linearly normal, and it is a projection from a nondegenerate three-fold
in G(1, 5).
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Remark 2.5. It will be useful later on to have some information about the two other types
of smooth congruences of bidegree Z2 different from the examples above. One of them
is given as the dependency locus of three section@ @f S, and it is easy to see that it

is linearly normal, since one can comput§{G(1, 4), Q ® Zy) = 0. The other one has a
fundamental line, and then it is linearly normal by usiFigeorem 3.1below (or a direct
computation ok} (G(1, 4), Q ® Zy) using the resolution dfy given in[5]).

Example 2.6. We reproduce here an example fri8h The vector bundl&ps(1) & Ops(1)
induces an embedding & in G(1, 7), which can be viewed in coordinates as the set of
lines spanned by the rows of the matrix

xo x1 x2 x3 0 0 0 O
0 O O O xp x1 x2 x3

when (o : x1 : x2 : x3) varies inP3. We consider now the linear projection frdpf to P*
defined by

(zo:z1:22:23 2425 26:27) > (20 21+ za 22+ 25: 23+ 26 : 27)-

This projection induces a projection fro6i(1, 7) to G(1, 4) and the image oP? in
G(1, 4) is given by the lines spanned by the rows of the matrix

xo x1 x2 x3 O

0 xo x1 x2 x3/)°
Since the minors of this matrix form a basis of the set of homogeneous polynomials of
degree two, the composition Bf — G (1, 4) with the Plicker's embedding o6 (1, 4) in
P9 defines precisely the double Veronese embeddiftj d particular, the first morphism
is an embedding. Therefore, itsimage is a smooth congruer@élird), of bidegree (42),
whichis notlinearly normal. In fact, if8] itis proved that this is the only smooth congruence

of G(1, 4) that is projected from a nondegenerate three-fold (i, 7). It is also obvious
that Q)y is Ops(1) @ Ops(1).

Example 2.7. We construct now an example of a smooth congruence of bidegrég (3
whose existence remained unknowftih This example is in fact analogousi@amples 2.3
and 2.6 We consider the blow-up(p) of P2 in a pointp and the vector bundl@@g(p)(H —
E)® Oﬁpg(p)(H), whereH is the pullback of the hyperplane section®t andE is the
exceptional divisor. This gives an embedding®8{p) into G(1, 6), which in coordinates,
and assuming thgt = (1: 0: 0 : 0), can bealescribed as the set of lines spanned by the
rows of the matrix

x1 x2 x3 0 O O O
0 O O xp x1 x2 x3
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when (o : x1 : x2 : x3) varies inP3 (we make an abuse of notation, and for instance the
entries in the first row of the above matrix should be in fact sectior@a{p)(H — E)).
We consider now the linear projection frdff to P* given by

(zo:z1:z2:23'za:25:26) > (23124 25+ 20 1 Z6 + 21 : 22)

and we have, as in the previous example, that the imageP3(p) in G(1, 4) by this
projection is given by the rows of the matrix

0 O x1 x2 x3
xo x1 x2 x3 O
The minors of this matrix still form a basis of the linear system of quadrics passing

throughp. Therefore, this yields an example of a smooth congruenc®bf4) that comes
from a nondegenerate three-foldG(1, 6).

2.3. Statement of the main theorem
The main result that we will prove in this paper is the following:

Theorem 2.8. If Y is a smooth congruence in G(1, 4) such that the restriction of the
universal quotient bundle Q splits, the pair (Y, Q)y) is one of the following:

() (P2, Ops @ Ops(1)), as in Example2.1
(i) (P* x P2, Op1,p2(1, 0) ® Op1, p2(0, 1)), as in Example2.2
(iii) (P3(€), Ops(py(H) & Opayy(H — E)), as in Example2.3
(iv) (P(Tp2), Opaz, p2+(1, 0)y & Op2, p2+(0, 1)v), as in Example2.4.
(V) (B3(p), Opa(,(H) ® Ops(,(H — E)), as in Example2.7.
(vi) (P23, Ops(1) ® Ops(1)), as in Example2.6.

In order to prove this theorem, we assume t@at splits asC; @ £, and suppose,
without loss of generality, that®(£1) < h9(L>). SinceQ), is globally generated, the same
holds for£1 andL,, and in particular they define a map frdnto linear spaces of respective
dimensionsh®(£1) — 1 andh%(L,) — 1 that meet all the lines of. We distinguish the
following cases:

(@) h9(L1) = 1: ThenYis contained in the set of lines @1 passing through a point. Hence
Yis as inExample 2.1and it is case (i) iTheorem 2.8

(b) 1O(L1) = 2: Then there is a liné meeting all the lines of. If K9(L,) = 3, then all the
lines of Y also meet a planf, so thatY is necessarily the congruencetbfample 2.2
i.e. case (ii) inTheorem 2.8

(c) h°(L1) > 3: Thenh®(Q,,) > 6. This implies that is a projection from at leasi (1, 5).
It is proved in[3] that if 29(Q),) > 8 thenY is necessarily the Veronese variety of
Example 2.6i.e. case (vi) inTheorem 2.8
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The above discussion implies that we are left with the subk®g@,) = 2, h°(L;) > 4
in case (b) and the subcagé$L1) = hO(L2) = 3; h9(L1) = 3, h%(L2) = 4in case (c). We
will devote the next section to the study of these subcases, which will complete the proof
of Theorem 2.8

3. Proof of the main theorem
3.1. The case h%(L1) = 2, h°(Lo) > 4

For such a congruence we observe that, besides the property of possessing a fundamental
line L, Yalso satisfies®(Q),) > 6, hence’is notlinearly normal. If4] there is a description
of all the congruences af (1, 4) with a fundamental line, so the natural way of studying
this case would be to compute for each of them the dimensidfP()Q|y), and check that
only the one oExample 2.3s not linearly normal. This was the method useBj which
required a lot of tedious computations. Here we will use instead an alternative geometric
approach suggested to us by&&zarlos Sierra.

Theorem 3.1. Let Y be a smooth congruence of G(1, 4) with fundamental line L that is
not the congruence of Example2.3. Then Y is linearly normal.

Proof. Assume that we have a hondegenerate subvaYietyG(1, 5) such that all of its
lines meet a fixed lind. ¢ P° and that is smoothly projectable &(1, 4). Through each
pointp of L there passes a two-dimensional family of line§ pfvhose union is a cone with
vertexp. The secant variety of this cone cannot be the whS|esince otherwise projecting
from any point ofP° two different lines ofY would go to the same line &4, contrary to
our projectability hypotheses. Hence either the coneFi$ ar a hypersurface contained in
a hyperplane oP®. In the second case, the hyperplane should be the same for all the points
p of L, since otherwise the union of all the hyperplanes WiI[Fﬁecontragicting again the
hypotheses thdf is smoothly projectable t&:(1, 4); but this means that is degenerate,
which is absurd. Therefore, we have that the set of lineg tfrough each poing of L

is the set of lines passing througland contained in a three-dimensional linear spage
containingp.

Looking at the description of congruences with a fundamental line givgf] jmve see
that they are either of bidegreg, p — 1) or (b, b) and thatb is the degree of the cone of
all the lines passing through a general poirtf the fundamental line. We have seen that
in our case this cone i4 ,, or rather its projection t&*, which has degree one. Hence the
only possibilities are then a congruence of bidegred){which is the one oExample 2.2
and is linearly normal) and a congruence of bidegred2which isExample 2.3 This
completes the proof. (]

3.2. The case h(L1) = hO(L2) = 3

To classify the congruences in this case, we prove the following theorem.
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Theorem 3.2. Let Y C G(1, 4) be a congruence that is projected from a nondegenerate
variety Y C G(1, 5) such that all lines of Y meet two disjoint planes ITy and ITo of P°. Then,
Y is the congruence of Example2.4.

Proof. The setoflinesifP® meeting/7; andIT, can be identified witl? x P2 embedded in
G(1, 5) by the vector bundi®pz2, p2(1, 0) & Op2,p2(0, 1). HenceY is a divisor ofP? x P2,
The Picard group oP? x P? is generated by the pullbackg andh; of the hyperplane
sections of each of its two factors. Therefore the clasg if the Chow ring ofP? x P2
can be written as

[Y] = ah1 + Bha,
for somew, B € Z. It is easy to check that the bidegree of the projedtési
(a.b)=(a+B.a+p).

The idea now is to see that the fact thiats smoothly projectable t6:(1, 4) gives a very
strong numerical conditions anandg.

Let p € P° be the center of the projection froR? to P that induces the isomorphism
from Y to Y. Since the projection can be taken to be general, we can assumeishait
in any IT1; (we could also us&@heorem 3.1since such a special projection would produce
a congruence with a fundamental line). Define

pr={(p, )N and pp=(p, ) NII;.

The pointsp, p1, p2 are in the line(p, IT1) N {p, I12) whose image under the projection
from p gives the intersection point of the planes that are the imadé andT».

Obviously, for any linel. contained inf1, (resp./11), all the lines of the pencil of lines
passing througlps (resp.p2) and contained in the span pf (resp.p2) andL are projected
to the same line oP* (in fact, it is not difficult to see that these are the only possible
contractions for the set of lines meetidigy and /7). It thus follows that any of these
pencils can only contain at most one linelofSince the class in the Chow ring]Bf x P2
of any of these pencils ihy (resp.i1h3), it follows that the intersection numberg]l2/,
and [Y]h1h3 are at most one, i.e, g < 1.

Therefore, the only possible bidegrees foare (1 1) and (22). The only smooth
congruence of bidegree,(1) in G(1, 4) is the one oExample 2.2which is linearly normal,
and henceitdoes notappearinthis case. As for bidegr@g, e only possible congruences
are the one oExample 2.4nd the ones dRemark 2.5Since the latter are linearly normal,
we conclude the proof. O

Remark 3.3. A different way of ruling out the case of bidegree ) in the last proof would
be to observe that = 0 (resp.f = 0) implies that through a general point O (resp.
I17) there do not pass lines &f which implies that there exists a fundamental curvéin
(resp.f12). Then it is enough to use the classification givefdin This different approach
can be found infg].
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3.3. The case ho(ﬁl) =3, ho(ﬁz) =4

To complete the study of this case (and hence the prodhebrem 2.8we will prove
the following theorem.

Theorem 3.4. The only smooth congruence Y in G(1, 4) that comes from a nondegenerate
three-fold Y C G(1, 6) and for which the restricted universal vector bundle Q|, splits with
hO(L1) = 3 andh®(Ly) = 4 is the congruence of Example2.7.

Notation 3.5. Throughout the proof, which we will divide into several steps along this
subsection, we will writd7; = P(H°(£1)) (of dimension two), andi, = P(H%(L2)) (of
dimension three), the two disjoint linear subvarietie®®that meet all lines of .

Lemma 3.6. IfY is a variety of G(L, 6) that can be isomorphically projected to G(1,4)in
the above conditions, then through any point of I1y there passes some line of Y, while the
dimension of the set of points of Az through which there passes some line of Y is at least
two.

Proof. If the statement were not true, then the (image of the) set of lingg,06r Ao
meeting some line of would be a fundamental curve fdf. But the classification of
smooth congruences (1, 4) with a fundamental curve given jd] does not contain any
congruence that is projected from a nondegenerate three-fallirg). O

As in the previous subsection, we can vighas a subvariety ap? x P embedded in
G(1, 6) by Opz, ps(1, 0) ® Opz, ps(0, 1). Then the class df in P? x P2 is:

[Y] = @h? + Bhiho + yh3,

whereh1 denotes the pullback of the class of the hyperplane sectiBfy @b is the pullback
of the class of the hyperplane sectionfdf andw, 8, ¥ are nonnegative integers. An easy
calculation shows that the bidegree of the projedted G(1, 4) is

(@.b)=(a+B+vy.B+)
As in the previous subsection, the idea is to bound these numbers and to use this to calculate
the possible bidegrees &f
Lemma 3.7. In the above conditions, B = 0or g = 1.

Proof. Let L C PP® be the center of the linear projection frdffi to P* that induces the
projection fromG(1, 6) to G(1, 4) sendingY to Y. Since the projection is general, we can
assume that does not meet neithéf1 nor A,. Consider the lines

Li={(L,A)NI1 and Lo = (L, 1) N As.

(which are the lines o and/T; whose image by the projection is precisely the intersection
of the images of7; and A,). Consider inP? x IP3 the subsep consisting of the lines of
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P meeting the lined.; and L,. Its class in the Chow ring dP? x P3, is h1h3, and by
construction we have that all the elemexgtshave the same image (1, 4) under the
linear projection fronL. SinceY can be projected isomorphically frofy it follows that
the intersection product of the classes¥ohndQ is at most one. This immediately yields
B <1, asdesired.

Take now a general; € IT;. By Lemma 3.6there is a one dimensional family of lines
of Y passing througlp:. The intersection of all these lines wittp will yield a curveC),
in Ao.

Lemma 3.8. The general curve Cp, is a line.

Proof. The cone with vertexy1 over a secant line tG,,l is obviously a plane containing

two lines ofY . If we assume for contradiction that,, is not a line, then the secant variety

of Cp, has dimension at least two (in fact it would be three unigsswere a plane curve).

This gives a two-dimensional family of planes containing two line¥ ofWhen moving

the pointpy in IT1, we get a four-dimensional family of such planes (observe that any of
these planes correspond to a unique ppink I11). SinceY is projectable taG(1, 4), the

union of the set of planes containing two linestohas dimension at most four. But since

this union contains a four-dimensional family of planes, it must be either a linear space
(which is absurd, sincE is nondegenerate) or it is made out of a one-dimensional family of
linear spaces of dimension three. The latter case is also impossible, since this would mean
for instance that any of these planes must meet a three-dimensional family of other planes
along a line, which is absurd.[]

Notation 3.9. From now on we will writer,, instead ofC,,. We will also writeV for the
family of linesr,, C A whenp, varies infT;.

Lemma 3.10. The family V has dimension two.

Proof. SinceV is dominated bylT;, it has dimension at most two. It cannot consist of
just one line, since this would be a fundamental line. Assume for contradictioi ez
dimension one. Then, a general lin& V comes from the points of a cun@. C I1;.
Reasoning as in the proof of the previous lemma, we observe that the cone withwertex
over the secant variety, is made out of planes containing two linesiofThis implies that
C, must be a line.

Observe that then for amye V we have that the set of lines meetingndC, is contained
in Y, and this is a quadric surface after thééMer embedding. Hendgis given as a union
of quadric surfaces.

Observe also that through a general poinfQfthere passes only one litg (because
a general poinp; € IT; determines a unique ling, ). Hence the set of lines, is a pencil
in IT;. In particular,Y is a union of quadrics parameterized by a rational curve.

We can use now the classification done[@) Theorem 2 of smooth congruences
Y C G(1, 4) with a quadric bundle structure, and we check #%®),) < 6 for all of them
for which the base curve is rational. This is a contradiction, which completes the pidof.

Lemma 3.11. Through a general point of, there passes a unique lineaf
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Proof. Assume that through a general pojnt € Ao there pass at least two lines;, and

Il Then the plane spanned py, p}, p> contains the linep1 p2, pj p2 of Y. Since through

a generap> there pass finitely many of these planes, we obtain a three-dimensional family
of planes whose union has necessarily dimension five. This contradicts the projectability of
Y. O

We could finish now the proof ofheorem 3.4y the classification given if9] of the
surfaces of5(1, 3) such that through a general pointi®¥there passes a unique line of the
surface. We however prefer to finish the proof in a more geometric way.

Lemma 3.12. With the above notation, o = 1.

Proof. Sincew is the intersection numbe#T - hg then geometrically it represents the
number of lines off passing through a general point 4$. So letp, € A, be a general
point. We thus know by emma 3.11that there is a unique ling,, passing througtp..
Since thenpy p2 is in Y, it follows thata > 0. It could happen however that there is an-
other p) € IT; such thatrp/l = rp,. But the same proof as faremma 3.11excludes this
possibility. [

Lemma 3.13. With the above notation, y = 1.

Proof. As before,y =[Y] hf - hy is the number of lines of passing through a general
point p; € I1; and meeting a general plafe C Ap. Given py € 111, letr,, be its corre-
sponding line inA,. Taking a plangd not containingr,,, and writingg = H Nr,,, then
{p1, q) is the only one line ot passing througlp; and meetingd. Thus,y = 1. O

_ The proof of Theorem 3.4ollows now readily. From the above lemmas, the class of
Y in P2 x P3 is h2 + Bhiho + h3, with B € {0, 1} and hence the possible bidegrees of
the projected are @, b) = (2, 1) and ¢, b) = (3, 2). We have seen that the only smooth
congruence of bidegree,(2) is the one oExample 2.3which is not a projection from a
nondegenerate three-fold (1, 6). And for bidegree (), the classification ifb] gives
only the case oExample 2.7and another one with a fundamental line (which is linearly
normal byTheorem 3.1
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