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Abstract

This work provides a complete classification of the smooth three-folds in the Grassmann variety
of lines inP4, for which the restriction of the universal quotient bundle is a direct sum of two line
bundles. For this purpose we use the geometrical interpretation of the splitting of the quotient bundle
as well as the meaning of the number of the independent global sections of each of its summands.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

As it is well known, the geometry of a subvariety in a projective spacePN is given by
the hyperplane bundleOPN (1) restricted to the subvariety. In the same way, the geometry
of a subvarietyX in G(k, N), the Grassmann variety ofk-planes in a projective spacePn

is given by the restriction to it of the universal quotient bundleQ of rankk + 1. It is thus
of interest to have as much information as possible of this restriction, for instance about its
stability.
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A first step in this direction was given in[7], where a classification of all the smooth
surfaces ofG(1, 3) for which the restriction ofQ splits is given. This classification fits into
the more general problem of studying the stability of the restriction. In fact, an important
conjecture by Dolgachev and Reider states that the restriction ofQ is semistable unless the
surface is contained in a hyperplane ofP5, the Pl̈ucker ambient space ofG(1, 3).

In this paper we deal with the same problem for three-folds insideG(1, 4) (also called
congruences). Our goal is to classify all the smooth congruencesY in G(1, 4) for which
Q|Y splits. The same problem for the universal subbundle of rank three was already solved
in [2].

Geometrically the fact that the restriction of the universal quotient bundle splits asQ|Y =
L1 ⊕ L2 means that the image ofY in the Grassmannian of lines inP(H0(Q|Y )) is as
a subset of the set of lines joining the points lying in two disjoint linear subvarieties of
P(H0(Q|Y )) with respective dimensionsh0(L1) − 1 andh0(L2) − 1. We use this fact to
make the classification depending onh0(Q|Y ) which essentially amounts to making it to
depend on the dimension of two linear subspaces meeting all the lines of the congruence. In
this way, we see that either the congruence comes from a projection of another Grassmannian
of bigger dimension or all of its lines meet a linear space of small dimension. Analyzing
each of these very special properties we conclude our classification.

The structure of the paper is as follows. In a first section we give the preliminaries, a
list of examples of congruences with split universal bundle (which will be eventually the
complete list) and state our classification result, explaining the different non-trivial cases
to study. In the second section we complete the classification by studying separately each
of the different cases.

The results of this paper is part of the PhD dissertation of the second author, under the
supervision of the first one.

2. Preliminaries, examples and first cases

2.1. Preliminaries

We will work over the fieldC of complex numbers. OnG(1, 4), the Grassmann variety
of lines inP4, we will consider the subbundle and quotient bundles appearing in the exact
sequence

0 → S∨ −→ V ⊗OG
π−→Q −→ 0. (1)

Each congruenceY of G(1, 4) has a bidegree (a, b) wherea is the number of lines ofY
passing through a general point ofP4 and b is the number of lines ofY contained in a
general hyperplaneH and meeting a general line ofH.

A fundamental curve of a congruence is a curve that meets all lines of the congruence.
If Y ⊂ G(1, 4) is a congruence, the dimension ofH0(Q|Y ) determines the Grassmannian

in whichY fits in a natural way. More precisely, we will say that a subvarietyX ⊂ G(1, N) is
nondegenerate if the union of all the lines ofX is not contained in a hyperplane ofPN . Then
h0(Q|Y ) = N + 1 means thatY is isomorphic to a nondegenerate subvarietyX ⊂ G(1, N)
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via a projection fromG(1, N) to G(1, 4) induced by a linear projection fromPN toP4. We
will say thatY ⊂ G(1, 4) is linearly normal if h0(Q|Y ) = 5. It is immediate to observe that
Y is linearly normal if and only ifh0(G(1, 4),Q⊗ IY ) = 0, whereIY is the ideal sheaf of
Y in G(1, 4).

2.2. Examples

Example 2.1. Let Y be a congruence inG(1, 4) for which there exists a pointp ∈ P4

contained in all the lines ofY. Because of dimensional reasons, it is easy to see thatY
is in fact the congruence of all lines inP4 passing throughp. Hence,Y ∼= P3, Q|Y ∼=
OP3 ⊕OP3(1), the congruenceY is the zero locus of a global section ofS and its bidegree
is (1, 0). Finally, we recall from[5] Lemma 4.1 that this is the only congruence of bidegree
(1, 0).

Example 2.2. The classification given in[5] shows that there is a unique smooth congruence
of bidegree (1, 1) in G(1, 4). This is described as the set of lines meeting a lineL ⊂ P4

and a skew planeΠ ⊂ P4. As an abstract three-fold,Y is isomorphic toP1 × P2, andQ|Y
is isomorphic toOP1×P2(1, 0) ⊕OP1×P2(0, 1). ObviouslyL is a fundamental line andY is
linearly normal.

Example 2.3. Again from [5] we see that there is only one type of smooth congruence
of bidegree (2, 1) in G(1, 4). This is described in the following way (see[1]). There is a
hyperplaneH ⊂ P4 containing a lineL′, and there exists another lineL ⊂ P4 (not contained
in H) with a fixed isomorphismϕ from L to the pencil of planes containingL′ inside of
H. The congruence is given by the union, when varyingp ∈ L, of the sets of lines passing
throughp and contained in the linear span ofp andϕ(p). From this description it is clear
that, as an abstract three-fold,Y is isomorphic to the blow-up̃P3(�) of P3 along a line�
(equivalently, a hyperplane section of the Segre embedding ofP

1 × P3, as described in[5]),
andQ|Y is isomorphic toO(H) ⊕O(H − E), whereH is the pullback of the hyperplane
section ofP3 and E is the exceptional divisor. It is also clear thatL is a fundamental
line and thatY is not linearly normal, since it comes from a nondegenerate three-fold
in G(1, 5).

Example 2.4. We study here one of the three types of smooth congruences of bidegree (2, 2)
in the classification given in[5]. As an abstract variety,Y is the projectivizationP(TP2) of the
tangent vector bundle of the projective plane, and hence it can be regarded as the incidence
subvariety insideP2 × P2∗

. It has therefore two different structures as a scroll in lines over
a projective plane. Each of them yields a plane meeting all the lines ofY. Moreover, if we
call these two planesΠ andΠ ′, there is an isomorphismϕ between the planeΠ and the
set of lines inΠ ′. The congruence consists thus in the union of the pencils of lines passing
though a pointp and contained in the plane spanned byp andϕ(p). It is easy to see from this
description thatQ|Y is isomorphic to the restriction toY ofOP2×P2∗ (1, 0) ⊕OP2×P2∗ (0, 1).
In particular,Y is not linearly normal, and it is a projection from a nondegenerate three-fold
in G(1, 5).
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Remark 2.5. It will be useful later on to have some information about the two other types
of smooth congruences of bidegree (2, 2) different from the examples above. One of them
is given as the dependency locus of three sections ofQ⊕ S, and it is easy to see that it
is linearly normal, since one can computeh1(G(1, 4),Q⊗ IY ) = 0. The other one has a
fundamental line, and then it is linearly normal by usingTheorem 3.1below (or a direct
computation ofh1(G(1, 4),Q⊗ IY ) using the resolution ofIY given in[5]).

Example 2.6. We reproduce here an example from[3]. The vector bundleOP3(1) ⊕OP3(1)
induces an embedding ofP3 in G(1, 7), which can be viewed in coordinates as the set of
lines spanned by the rows of the matrix

(
x0 x1 x2 x3 0 0 0 0

0 0 0 0 x0 x1 x2 x3

)

when (x0 : x1 : x2 : x3) varies inP3. We consider now the linear projection fromP7 to P4

defined by

(z0 : z1 : z2 : z3 : z4 : z5 : z6 : z7) 
→ (z0 : z1 + z4 : z2 + z5 : z3 + z6 : z7).

This projection induces a projection fromG(1, 7) to G(1, 4) and the image ofP3 in
G(1, 4) is given by the lines spanned by the rows of the matrix

(
x0 x1 x2 x3 0

0 x0 x1 x2 x3

)
.

Since the minors of this matrix form a basis of the set of homogeneous polynomials of
degree two, the composition ofP3 −→ G(1, 4) with the Pl̈ucker’s embedding ofG(1, 4) in
P

9 defines precisely the double Veronese embedding ofP
3. In particular, the first morphism

is an embedding. Therefore, its image is a smooth congruence inG(1, 4), of bidegree (4, 2),
which is not linearly normal. In fact, in[3] it is proved that this is the only smooth congruence
of G(1, 4) that is projected from a nondegenerate three-fold inG(1, 7). It is also obvious
thatQ|Y isOP3(1) ⊕OP3(1).

Example 2.7. We construct now an example of a smooth congruence of bidegree (3, 2)
whose existence remained unknown in[5]. This example is in fact analogous toExamples 2.3
and 2.6. We consider the blow-up̃P3(p) of P3 in a pointp and the vector bundleO

P̃3(p)(H −
E) ⊕O

P̃3(p)(H), whereH is the pullback of the hyperplane section ofP3 and E is the

exceptional divisor. This gives an embedding ofP̃3(p) into G(1, 6), which in coordinates,
and assuming thatp = (1 : 0 : 0 : 0), can bedescribed as the set of lines spanned by the
rows of the matrix(

x1 x2 x3 0 0 0 0

0 0 0 x0 x1 x2 x3

)
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when (x0 : x1 : x2 : x3) varies inP3 (we make an abuse of notation, and for instance the
entries in the first row of the above matrix should be in fact sections ofO

P̃3(p)(H − E)).
We consider now the linear projection fromP6 to P4 given by

(z0 : z1 : z2 : z3 : z4 : z5 : z6) 
→ (z3 : z4 : z5 + z0 : z6 + z1 : z2)

and we have, as in the previous example, that the imageY of P̃3(p) in G(1, 4) by this
projection is given by the rows of the matrix

(
0 0 x1 x2 x3

x0 x1 x2 x3 0

)

The minors of this matrix still form a basis of the linear system of quadrics passing
throughp. Therefore, this yields an example of a smooth congruence ofG(1, 4) that comes
from a nondegenerate three-fold inG(1, 6).

2.3. Statement of the main theorem

The main result that we will prove in this paper is the following:

Theorem 2.8. If Y is a smooth congruence in G(1, 4) such that the restriction of the
universal quotient bundle Q splits, the pair (Y,Q|Y ) is one of the following:

(i) (P3,OP3 ⊕OP3(1)), as in Example2.1.
(ii) (P1 × P2,OP1×P2(1, 0) ⊕OP1×P2(0, 1)), as in Example2.2.

(iii) ( P̃3(�),O
P̃3(�)(H) ⊕O

P̃3(�)(H − E)), as in Example2.3.
(iv) (P(TP2),O

P2×P2∗ (1, 0)|Y ⊕O
P2×P2∗ (0, 1)|Y ), as in Example2.4.

(v) (P̃3(p),O
P̃3(p)(H) ⊕O

P̃3(p)(H − E)), as in Example2.7.

(vi) (P3,OP3(1) ⊕OP3(1)), as in Example2.6.

In order to prove this theorem, we assume thatQ|Y splits asL1 ⊕ L2, and suppose,
without loss of generality, thath0(L1) ≤ h0(L2). SinceQ|Y is globally generated, the same
holds forL1 andL2, and in particular they define a map fromY to linear spaces of respective
dimensionsh0(L1) − 1 andh0(L2) − 1 that meet all the lines ofY. We distinguish the
following cases:

(a) h0(L1) = 1: ThenY is contained in the set of lines onP4 passing through a point. Hence
Y is as inExample 2.1, and it is case (i) inTheorem 2.8.

(b) h0(L1) = 2: Then there is a lineL meeting all the lines ofY. If h0(L2) = 3, then all the
lines ofY also meet a planeΠ, so thatY is necessarily the congruence ofExample 2.2,
i.e. case (ii) inTheorem 2.8.

(c) h0(L1) ≥ 3: Thenh0(Q|Y ) ≥ 6. This implies thatY is a projection from at leastG(1, 5).
It is proved in[3] that if h0(Q|Y ) ≥ 8 thenY is necessarily the Veronese variety of
Example 2.6, i.e. case (vi) inTheorem 2.8.
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The above discussion implies that we are left with the subcaseh0(L1) = 2, h0(L2) ≥ 4
in case (b) and the subcasesh0(L1) = h0(L2) = 3;h0(L1) = 3, h0(L2) = 4 in case (c). We
will devote the next section to the study of these subcases, which will complete the proof
of Theorem 2.8.

3. Proof of the main theorem

3.1. The case h0(L1) = 2, h0(L2) ≥ 4

For such a congruence we observe that, besides the property of possessing a fundamental
lineL,Y also satisfiesh0(Q|Y ) ≥ 6, henceY is not linearly normal. In[4] there is a description
of all the congruences ofG(1, 4) with a fundamental line, so the natural way of studying
this case would be to compute for each of them the dimension ofH0(Q|Y ), and check that
only the one ofExample 2.3is not linearly normal. This was the method used in[8], which
required a lot of tedious computations. Here we will use instead an alternative geometric
approach suggested to us by José Carlos Sierra.

Theorem 3.1. Let Y be a smooth congruence of G(1, 4) with fundamental line L that is
not the congruence of Example2.3. Then Y is linearly normal.

Proof. Assume that we have a nondegenerate subvarietyȲ ⊂ G(1, 5) such that all of its
lines meet a fixed lineL ⊂ P5 and that is smoothly projectable toG(1, 4). Through each
pointp of L there passes a two-dimensional family of lines ofȲ , whose union is a cone with
vertexp. The secant variety of this cone cannot be the wholeP5, since otherwise projecting
from any point ofP5 two different lines ofȲ would go to the same line inP4, contrary to
our projectability hypotheses. Hence either the cone is aP

3 or a hypersurface contained in
a hyperplane ofP5. In the second case, the hyperplane should be the same for all the points
p of L, since otherwise the union of all the hyperplanes will beP5, contradicting again the
hypotheses that̄Y is smoothly projectable toG(1, 4); but this means that̄Y is degenerate,
which is absurd. Therefore, we have that the set of lines ofȲ through each pointp of L
is the set of lines passing throughp and contained in a three-dimensional linear spaceAp

containingp.
Looking at the description of congruences with a fundamental line given in[4], we see

that they are either of bidegree (b, b − 1) or (b, b) and thatb is the degree of the cone of
all the lines passing through a general pointp of the fundamental line. We have seen that
in our case this cone isAp, or rather its projection toP4, which has degree one. Hence the
only possibilities are then a congruence of bidegree (1, 1) (which is the one ofExample 2.2
and is linearly normal) and a congruence of bidegree (2, 1), which isExample 2.3. This
completes the proof.�

3.2. The case h0(L1) = h0(L2) = 3

To classify the congruences in this case, we prove the following theorem.
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Theorem 3.2. Let Y ⊂ G(1, 4) be a congruence that is projected from a nondegenerate
variety Ȳ ⊂ G(1, 5) such that all lines of Ȳ meet two disjoint planes Π1 and Π2 of P5. Then,
Y is the congruence of Example2.4.

Proof. The set of lines inP5 meetingΠ1 andΠ2 can be identified withP2 × P2 embedded in
G(1, 5) by the vector bundleOP2×P2(1, 0) ⊕OP2×P2(0, 1). HencēY is a divisor ofP2 × P2.
The Picard group ofP2 × P2 is generated by the pullbacksh1 andh2 of the hyperplane
sections of each of its two factors. Therefore the class ofȲ in the Chow ring ofP2 × P2

can be written as

[Ȳ ] = αh1 + βh2,

for someα, β ∈ Z. It is easy to check that the bidegree of the projectedY is

(a, b) = (α + β, α + β).

The idea now is to see that the fact thatȲ is smoothly projectable toG(1, 4) gives a very
strong numerical conditions onα andβ.

Let p ∈ P5 be the center of the projection fromP5 to P4 that induces the isomorphism
from Ȳ to Y. Since the projection can be taken to be general, we can assume thatp is not
in anyΠi (we could also useTheorem 3.1, since such a special projection would produce
a congruence with a fundamental line). Define

p1 = 〈p, Π1〉 ∩ Π2 and p2 = 〈p, Π2〉 ∩ Π1.

The pointsp, p1, p2 are in the line〈p, Π1〉 ∩ 〈p, Π2〉 whose image under the projection
from p gives the intersection point of the planes that are the image ofΠ1 andΠ2.

Obviously, for any lineL contained inΠ2 (resp.Π1), all the lines of the pencil of lines
passing throughp1 (resp.p2) and contained in the span ofp1 (resp.p2) andL are projected
to the same line ofP4 (in fact, it is not difficult to see that these are the only possible
contractions for the set of lines meetingΠ1 and Π2). It thus follows that any of these
pencils can only contain at most one line ofȲ . Since the class in the Chow ring ofP2 × P2

of any of these pencils ish2
1h2 (resp.h1h

2
2), it follows that the intersection numbers [Ȳ ]h2

1h2
and [Ȳ ]h1h

2
2 are at most one, i.e.α, β ≤ 1.

Therefore, the only possible bidegrees forY are (1, 1) and (2, 2). The only smooth
congruence of bidegree (1, 1) inG(1, 4) is the one ofExample 2.2, which is linearly normal,
and hence it does not appear in this case. As for bidegree (2, 2), the only possible congruences
are the one ofExample 2.4and the ones ofRemark 2.5. Since the latter are linearly normal,
we conclude the proof.�

Remark 3.3. A different way of ruling out the case of bidegree (1, 1) in the last proof would
be to observe thatα = 0 (resp.β = 0) implies that through a general point ofΠ1 (resp.
Π2) there do not pass lines of̄Y , which implies that there exists a fundamental curve inΠ1
(resp.Π2). Then it is enough to use the classification given in[4]. This different approach
can be found in[8].
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3.3. The case h0(L1) = 3, h0(L2) = 4

To complete the study of this case (and hence the proof ofTheorem 2.8) we will prove
the following theorem.

Theorem 3.4. The only smooth congruence Y in G(1, 4) that comes from a nondegenerate
three-fold Ȳ ⊂ G(1, 6) and for which the restricted universal vector bundleQ|Y splits with
h0(L1) = 3 andh0(L2) = 4 is the congruence of Example2.7.

Notation 3.5. Throughout the proof, which we will divide into several steps along this
subsection, we will writeΠ1 = P(H0(L1)) (of dimension two), andA2 = P(H0(L2)) (of
dimension three), the two disjoint linear subvarieties ofP6 that meet all lines of̄Y .

Lemma 3.6. If Ȳ is a variety of G(1, 6) that can be isomorphically projected to G(1, 4) in
the above conditions, then through any point of Π1 there passes some line of Ȳ , while the
dimension of the set of points of A2 through which there passes some line of Ȳ is at least
two.

Proof. If the statement were not true, then the (image of the) set of lines ofΠ1 or A2
meeting some line of̄Y would be a fundamental curve forY. But the classification of
smooth congruences inG(1, 4) with a fundamental curve given in[4] does not contain any
congruence that is projected from a nondegenerate three-fold inG(1, 6). �

As in the previous subsection, we can view̄Y as a subvariety ofP2 × P3 embedded in
G(1, 6) byOP2×P3(1, 0) ⊗OP2×P3(0, 1). Then the class of̄Y in P2 × P3 is:

[Y ] = αh2
1 + βh1h2 + γh2

2,

whereh1 denotes the pullback of the class of the hyperplane section ofP
2, h2 is the pullback

of the class of the hyperplane section ofP3, andα, β, γ are nonnegative integers. An easy
calculation shows that the bidegree of the projectedY ⊂ G(1, 4) is

(a, b) = (α + β + γ, β + γ).

As in the previous subsection, the idea is to bound these numbers and to use this to calculate
the possible bidegrees ofY.

Lemma 3.7. In the above conditions, β = 0 or β = 1.

Proof. Let L ⊂ P6 be the center of the linear projection fromP6 to P4 that induces the
projection fromG(1, 6) to G(1, 4) sendingȲ to Y. Since the projection is general, we can
assume thatL does not meet neitherΠ1 norA2. Consider the lines

L1 = 〈L, A2〉 ∩ Π1 and L2 = 〈L, Π1〉 ∩ A2.

(which are the lines ofA2 andΠ1 whose image by the projection is precisely the intersection
of the images ofΠ1 andA2). Consider inP2 × P3 the subsetQ consisting of the lines of
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P
6 meeting the linesL1 andL2. Its class in the Chow ring ofP2 × P3, is h1h

2
2, and by

construction we have that all the elementsQ have the same image inG(1, 4) under the
linear projection fromL. SinceȲ can be projected isomorphically fromL, it follows that
the intersection product of the classes ofȲ andQ is at most one. This immediately yields
β ≤ 1, as desired. �

Take now a generalp1 ∈ Π1. By Lemma 3.6, there is a one dimensional family of lines
of Ȳ passing throughp1. The intersection of all these lines withA2 will yield a curveCp1

in A2.

Lemma 3.8. The general curve Cp1 is a line.

Proof. The cone with vertexp1 over a secant line toCp1 is obviously a plane containing
two lines ofȲ . If we assume for contradiction thatCp1 is not a line, then the secant variety
of Cp1 has dimension at least two (in fact it would be three unlessCp1 were a plane curve).
This gives a two-dimensional family of planes containing two lines ofȲ . When moving
the pointp1 in Π1, we get a four-dimensional family of such planes (observe that any of
these planes correspond to a unique pointp1 ∈ Π1). SinceȲ is projectable toG(1, 4), the
union of the set of planes containing two lines ofȲ has dimension at most four. But since
this union contains a four-dimensional family of planes, it must be either a linear space
(which is absurd, sincēY is nondegenerate) or it is made out of a one-dimensional family of
linear spaces of dimension three. The latter case is also impossible, since this would mean
for instance that any of these planes must meet a three-dimensional family of other planes
along a line, which is absurd.�

Notation 3.9. From now on we will writerp1 instead ofCp1. We will also writeV for the
family of linesrp1 ⊂ A2 whenp1 varies inΠ1.

Lemma 3.10. The family V has dimension two.

Proof. SinceV is dominated byΠ1, it has dimension at most two. It cannot consist of
just one line, since this would be a fundamental line. Assume for contradiction thatV has
dimension one. Then, a general liner ∈ V comes from the points of a curveCr ⊂ Π1.
Reasoning as in the proof of the previous lemma, we observe that the cone with vertexr
over the secant varietyCr is made out of planes containing two lines ofȲ . This implies that
Cr must be a line.

Observe that then for anyr ∈ V we have that the set of lines meetingr andCr is contained
in Ȳ , and this is a quadric surface after the Plücker embedding. HencēY is given as a union
of quadric surfaces.

Observe also that through a general point ofΠ1 there passes only one lineCr (because
a general pointp1 ∈ Π1 determines a unique linerp1). Hence the set of linesCr is a pencil
in Π1. In particular,Ȳ is a union of quadrics parameterized by a rational curve.

We can use now the classification done in[6] Theorem 2.2 of smooth congruences
Y ⊂ G(1, 4) with a quadric bundle structure, and we check thath0(Q|Y ) ≤ 6 for all of them
for which the base curve is rational. This is a contradiction, which completes the proof.�
Lemma 3.11. Through a general point ofA2 there passes a unique line ofV.
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Proof. Assume that through a general pointp2 ∈ A2 there pass at least two linesrp1 and
rp′

1
. Then the plane spanned byp1, p

′
1, p2 contains the linesp1p2, p

′
1p2 of Ȳ . Since through

a generalp2 there pass finitely many of these planes, we obtain a three-dimensional family
of planes whose union has necessarily dimension five. This contradicts the projectability of
Ȳ . �

We could finish now the proof ofTheorem 3.4by the classification given in[9] of the
surfaces ofG(1, 3) such that through a general point ofP3 there passes a unique line of the
surface. We however prefer to finish the proof in a more geometric way.

Lemma 3.12. With the above notation, α = 1.

Proof. Sinceα is the intersection number [Ȳ ] · h3
2, then geometrically it represents the

number of lines of̄Y passing through a general point ofA2. So letp2 ∈ A2 be a general
point. We thus know byLemma 3.11that there is a unique linerp1 passing throughp2.
Since thenp1p2 is in Ȳ , it follows thatα > 0. It could happen however that there is an-
otherp′

1 ∈ Π1 such thatrp′
1

= rp1. But the same proof as forLemma 3.11excludes this
possibility. �
Lemma 3.13. With the above notation, γ = 1.

Proof. As before,γ = [Ȳ ] · h2
1 · h2 is the number of lines of̄Y passing through a general

point p1 ∈ Π1 and meeting a general planeH ⊂ A2. Givenp1 ∈ Π1, let rp1 be its corre-
sponding line inA2. Taking a planeH not containingrp1, and writingq = H ∩ rp1, then
〈p1, q〉 is the only one line ofY passing throughp1 and meetingH . Thus,γ = 1. �

The proof ofTheorem 3.4follows now readily. From the above lemmas, the class of
Ȳ in P2 × P3 is h2

1 + βh1h2 + h2
2, with β ∈ {0, 1} and hence the possible bidegrees of

the projectedY are (a, b) = (2, 1) and (a, b) = (3, 2). We have seen that the only smooth
congruence of bidegree (2, 1) is the one ofExample 2.3, which is not a projection from a
nondegenerate three-fold inG(1, 6). And for bidegree (3, 2), the classification in[5] gives
only the case ofExample 2.7and another one with a fundamental line (which is linearly
normal byTheorem 3.1).
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[8] B. Graña, Escisíon de fibrados enG(1, 4) y sus variedades, Ph.D. Thesis, Universidad Complutense de
Madrid, January, 2003.

[9] Z. Ran, Surfaces of order 1 in Grassmannians, J. Reine Angew. Math. 368 (1986) 119–126.


	Congruences on G(1,4) with split universal quotient bundle
	Introduction
	Preliminaries, examples and first cases
	Preliminaries
	Examples
	Statement of the main theorem

	Proof of the main theorem
	The case h0(L1)=2,h0(L2)ge 4
	The case h0(L1)=h0(L2)=3
	The case h0(L1) = 3,h0(L2)=4

	Acknowledgments
	References


